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Prolyl-4-hydroxylase catalyzes the hydroxylation of proline
residues at X-Pro-Gly sequences in procollagen (Scheme 1). This
reaction is an essential step in the biosynthesis of collagen, the
major protein component of connective tissue.

Prolyl-4-hydroxylase (human) is anR2â2 tetramer (R ) 59 000
Da,â ) 55 000 Da) and requires Fe(II),R-ketoglutarate, oxygen,
and ascorbate for activity.1 The genes for theR andâ subunits
of the human enzyme have been cloned, sequenced, and over-
expressed in a baculovirus expression system, and the enzyme
can be readily purified in multi-milligram quantities.2

5-Oxaproline-containing peptides have been previously identi-
fied as mechanism-based inactivating agents for prolyl-4-hy-
droxylase.3 The mechanism of this inactivation has not been
determined. As a first step toward elucidating this mechanism,
we report here the synthesis of a highly fluorescent 5-oxaproline-
containing peptide5 and the identification of its prolyl-4-
hydroxylase-catalyzed oxidation product.

Two mechanisms for the enzymatic oxidation of5 were
considered (Scheme 2). In mechanism A, hydrogen-atom abstrac-
tion from the oxaproline by the active site ferryl [FeIV ) O]
intermediate would give radical7. Recombination followed by
product dissociation would give the hemiacetal9. In mechanism
B, â-scission of the weak NO bond of7 would give10. Addition
of the iron(III)hydroxide to the aldehyde followed by intra-
molecular hydrogen-atom transfer4 and product dissociation would
give 13 in which the oxaproline moiety has been oxidized to
aspartic acid.

Peptide5 was synthesized as outlined in Scheme 3.5,6 This was
an efficient suicide substrate for prolyl-4-hydroxylase, covalently
labeling the enzyme, and only trace quantities of a polar reaction

product could be detected in the reaction mixture.7,8 This product
was purified,9 and FAB-MS analysis demonstrated that the
enzymatic oxidation resulted in the addition of one atom ofoxygen
to 5.10 This is consistent with the formation of either9 or 13.

Peptides9 and 13 were synthesized to differentiate between
mechanisms A and B. Chromatographic comparison of these
peptides with the enzymatic product demonstrated that9 was not
formed and that the only enzymatic product was13. This was
confirmed by scale-up of the enzymatic reaction and the isolation
of the reaction product in sufficient quantities for complete
spectroscopic characterization (1H NMR, COSY, HMQC, HMBC,
HRFAB-MS, and MS-MS). The spectra of the enzymatic product
and the spectra of peptide13 were identical.

While theR-ketoglutarate-dependent monooxygenases are not
as well-studied as the heme-dependent monooxygenases, several
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examples of this class of enzyme have now been characterized,11-18

and model studies on the reaction have been described.19 In each
case, the reaction is proposed to proceed via hydrogen-atom

abstraction by a ferryl [FeIV ) O] intermediate to give a substrate
radical. In the systems for which radical probes have been
synthesized, experimental evidence in support of such a radical
intermediate has been difficult to obtain. The only successful
trapping experiment has been described using a cyclopropyl-
substituted cephalosporin analogue to trap the radical formed by
deacetoxy-deacetylcephalosporin C synthase.20 The inactivation
of γ-butyrobetaine hydroxylase by a cyclopropyl-containing
substrate analogue has been reported, but the reaction products
have not been characterized.21 A cyclopropyl-substituted procla-
vaminic acid analogue was not a substrate for clavaminate
synthase, and proline derivatives substituted with radical traps
were not substrates for prolyl-4-hydroxylase.22,23The experiments
described here demonstrate a new strategy for radical-trapping
and suggest that the prolyl-4-hydroxylase-catalyzed oxidation of
proline residues in procollagen proceeds via a radical intermediate.

Studies to identify the labeled active-site residues of the
inactivated enzyme are currently in progress and will clarify how
the chemistry involved in the oxidation of5 results in enzyme
inactivation.
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